A Stable Multigrid Strategy for Convection-diffusion Using High Order Compact Discretization∗

نویسندگان

  • ANAND L. PARDHANANI
  • WILLIAM F. SPOTZ
  • GRAHAM F. CAREY
چکیده

Multigrid schemes based on high order compact discretization are developed for convection-diffusion problems. These multigrid schemes circumvent numerical oscillations and instability, while also yielding higher accuracy. These instabilities are typically exacerbated by the coarser grids in multigrid calculations. Our approach incorporates a 4th order compact formulation for the discretization, while also constructing a consistent multigrid restriction scheme to preserve the accuracy of the fine-to-coarse grid projections. Numerical results demonstrating the higher accuracy and robustness of this approach are presented for representative 2D convection-diffusion problems. These calculations also confirm that our numerical algorithms exhibit the typical multigrid efficiency and mesh-independent convergence properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Accuracy and Scalable Multiscale Multigrid Computation for 3D Convection Diffusion Equation

We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined w...

متن کامل

Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations

A high-order discontinuous Galerkin finite element discretization and p-multigrid solution procedure for the compressible Navier-Stokes equations are presented. The discretization has an element-compact stencil such that only elements sharing a face are coupled, regardless of the solution space. This limited coupling maximizes the effectiveness of the p-multigrid solver, which relies on an elem...

متن کامل

Asymptotic Stability of a 9-point Multigrid Algorithm for Convection-diffusion Equations∗

We consider the solution of the convection-diffusion equation in two dimensions by a compact highorder 9-point discretization formula combined with multigrid algorithm. We prove the -asymptotic stability of the coarse-grid operators. Two strategies are examined. A method to compute the asymptotic convergence is described and applied to the multigrid algorithm.

متن کامل

A fourth-order compact difference scheme on face centered cubic grids with multigrid method for solving 2D convection diffusion equation

We present a fourth-order compact finite difference scheme on the face centered cubic (FCC) grids for the numerical solution of the two-dimensional convection diffusion equation. The seven-point formula is defined on a regular hexagon, where the strategy of directional derivative is employed to make the derivation procedure straightforward, efficient, and concise. A corresponding multigrid meth...

متن کامل

p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations

We present a p-multigrid solution algorithm for a high-order discontinuous Galerkin finite element discretization of the compressible Navier–Stokes equations. The algorithm employs an element line Jacobi smoother in which lines of elements are formed using coupling based on a p = 0 discretization of the scalar convection–diffusion equation. Fourier analysis of the two-level p-multigrid algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997